Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276391

RESUMO

BackgroundKidney disease is a significant risk factor for COVID-19-related mortality. Achieving high COVID-19 vaccine coverage among people with kidney disease is therefore a public health priority. MethodsWith the approval of NHS England, we performed a retrospective cohort study using the OpenSAFELY-TPP platform. Individual-level routine clinical data from 24 million people in England were included. A cohort of individuals with stage 3-5 chronic kidney disease (CKD) or receiving renal replacement therapy (RRT) at the start of the COVID-19 vaccine roll-out was identified based on evidence of reduced estimated glomerular filtration rate or inclusion in the UK Renal Registry. Individual-level factors associated with vaccine uptake were explored via Cox proportional hazards models. Results948,845 people with stage 3-5 CKD or receiving RRT were included. Cumulative vaccine coverage as of 11th May 2022 was 97.5%, 97.0%, and 93.5% for doses 1, 2, and 3, respectively, and 61.1% among individuals with one or more indications for receipt of a fourth dose. Delayed 3-dose vaccine uptake was associated with non-White ethnicity, social deprivation, and severe mental illness - associations that were consistent across CKD stages and in RRT recipients. Similar associations were observed for 4-dose uptake, which was also delayed among care home residents. ConclusionAlthough high primary and booster dose coverage has been achieved among people with kidney disease in England, key disparities in vaccine uptake remain across demographic groups. Identifying how to address these disparities remains a priority to reduce the risk of severe disease in this vulnerable patient group.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274524

RESUMO

We aimed to describe the outcomes of Omicron infection in kidney transplant recipients (KTR), compare the efficacy of the community therapeutic interventions and report the safety profile of molnupiravir. From 142 KTRs diagnosed with COVID-19 infection after Omicron had become the dominant variant in the UK, 116 (78.9%) cases were diagnosed in the community; 47 receiving sotrovimab, 21 molnupiravir and 48 no treatment. 10 (20.8%) non-treated patients were hospitalised following infection, which was significantly higher than the sotrovimab group (2.1%), p=0.0048, but not the molnupiravir treated group (14.3%), p=0.47. The only admission following sotrovimab occurred in a patient infected with BA.2. One patient from the molnupiravir and no-treatment groups required ICU support, and both subsequently died, with one other death in the no-treatment group. No patient receiving sotrovimab died. 6/116 (5.2%) patients required dialysis following their diagnosis; 2 (9.5%) patients receiving molnupiravir and 4 (8.3%) no-treatment. This requirement was significantly higher in the molnupiravir group compared with the sotrovimab treated patients, in whom no patient required dialysis, p=0.035. Both molnupiravir treated patients requiring dialysis had features of systemic thrombotic microangiopathy. Post-vaccination serostatus was available in 110 patients. Seropositive patients were less likely to require hospital admission compared with seronegative patients, 6 (7.0%) and 6 (25.0%) respectively, p=0.023. Seropositive patients were also less likely to require dialysis therapy, p=0.016. In conclusion, sotrovimab treatment in the community was associated with superior patient and transplant outcomes; its clinical efficacy against the BA.2 variant requires a rapid review. The treatment benefit of molnupiravir was not evident, and wider safety reporting in transplant patients is needed.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274267

RESUMO

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we performed longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identified transcriptomic and proteomic signatures of COVID-19 severity, and found distinct temporal molecular profiles in patients with severe disease. Supervised learning revealed that the plasma proteome was a superior indicator of clinical severity than the PBMC transcriptome. We showed that both the levels and trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, are the strongest predictors of clinical outcome. Strikingly, we observed that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274396

RESUMO

BackgroundSolid organ transplant recipients have attenuated immune responses to SARS-CoV-2 vaccines. In this study, we report on immune responses to 3rd- (V3) and 4th- (V4) doses of heterologous and homologous vaccines in a kidney transplant population. Methods724 kidney transplant recipients were prospectively screened for serological responses following 3 primary doses of a SARS-CoV2 vaccine. 322 patients were sampled post-V4 for anti-spike (anti-S), with 69 undergoing assessment of SARS-CoV-2 T-cell responses. All vaccine doses were received post-transplant, only mRNA vaccines were used for V3 and V4 dosing. All participants had serological testing performed post-V2 and at least once prior to their 1st dose of vaccine. Results586/724 (80.9%) patients were infection-naive post-V3; 141/2586 (24.1%) remained seronegative at 31 (21-51) days post-V3. Timing of vaccination in relation to transplantation, OR: 0.28 (0.15-0.54), p=0.0001; immunosuppression burden, OR: 0.22 (0.13-0.37), p<0.0001, and a diagnosis of diabetes, OR: 0.49 (0.32-0.75), p=0.001, remained independent risk factors for non-seroconversion. Seropositive patients post-V3 had greater anti-S if primed with BNT162b2 compared with ChAdOx1, p=0.001. Post-V4, 45/239 (18.8%) infection-naive patients remained seronegative. De novo seroconversion post-V4 occurred in 15/60 (25.0%) patients who were seronegative post-V3. There was no difference in anti-S post-V4 by vaccine combination, p=0.50. Anti-S post-V4 were sequentially greater in those seroconverting post V2- compared with V3-, and V3- compared with V4-, at 1561 (567-5211), 379 (101-851) and 19 (9.7-48) BAU/ml respectively. T-cell responses were poor, with only 11/54 (20.4%) infection-naive patients having detectable T-cell responses post-V4, with no difference seen by vaccine type. ConclusionA significant proportion of transplant recipients remain seronegative following 3- and 4- doses of SARS-CoV-2 vaccines, with poor T-cell responses, and are likely to have inadequate protection against infection.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269778

RESUMO

BackgroundSolid organ transplant recipients have attenuated immune responses to SARS-CoV-2 vaccines. Emerging evidence suggests at least equivalent immunogenicity of heterologous compared with homologous vaccine regimens in the general population. In this study, we report on immune responses to 3rd dose BNT162b2 vaccines in transplant recipients either primed with ChAdOx1 or BNT162b2. Methods700 kidney transplant recipients were prospectively screened for serological responses (median time of 33 (21-52) days) following 3 primary doses of a SARS-CoV2 vaccine. All vaccine doses were received post-transplant, and all 3rd doses were BNT162b2. All participants had serological testing performed post-2nd vaccination at a median time of 34 (IQR 26-46) days following the 2nd inoculation, and at least once prior to their 1st dose of vaccine. Results366/700 (52.3%) participants were primed with BNT162b2, whilst 334/700 (47.7) had received ChAdOx1. Overall, 139/700 (19.9%) participants had evidence of prior infection. Of 561 infection naive participants, 263 (46.9%) had no detectable anti-S following 2-doses of vaccine (V2). 134 (23.9%) participants remained seronegative post 3rd vaccine (V3); 54/291 (18.6%) and 79/270 (29.3%) of participants receiving BNT162b2 and ChAdOx1 respectively, p=0.0029. Median anti-S concentrations were significantly higher post-V3 in patients who had received BNT162b2 compared with ChAdOx1, at 612 (27-234) versus 122 (7.1-1111) BAU/ml respectively, p<0.0001. Cellular responses were investigated in 30 infection naive participants at a median time of 35 (24-46) days post-V3. Eighteen of 30 (60.0%) participants had undetectable T-cell responses. There were neither qualitative or quantitative differences in T-cell responses between those patients who received BNT162b2 or ChAdOx1 as their first 2-doses, with 10/16 (62.5%) and 8/14 (57.1%) respectively having undetectable T-cell responses, p=0.77. ConclusionA significant proportion of transplant recipients remain seronegative following 3 doses of SARS-CoV-2 vaccines, with anti-S concentrations lower in patients receiving heterologous versus homologous vaccinations.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269804

RESUMO

BackgroundEmerging data suggest a reduction in SARS-CoV-2 vaccine effectiveness against Omicron SARS-CoV-2 infection. There is also evidence to show that Omicron is less pathogenic than previous variants. For clinically vulnerable populations, a less pathogenic variant may still have significant impact on morbidity and mortality. Herein we assess the clinical impact of Omicron infection, and vaccine effectiveness, in an in-centre haemodialysis (IC-HD) population. MethodsOne thousand, one hundred and twenty-one IC-HD patients were included in the analysis, all patients underwent weekly screening for SARS-CoV-2 infection via RT-PCR testing between 1st December 2021 and 16th January 2022. Screening for infection via weekly RT-PCR testing and 3-monthly serological assessment started prior to the vaccine roll out in 2020. ResultsOmicron infection was diagnosed in 145/1121 (12.9%) patients over the study period, equating to an infection rate of 3.1 per 1000 patient days. Vaccine effectiveness (VE) against Omicron infection in patients who had received a booster vaccine was 58 (23-75)%, p=0.002; VE was seen in patients who received either ChAdOx1, VE of 47(2-70)%, p=0.034, or BNT162b2, VE of 66 (36-81)%, p=0.0005, as their first two doses. No protection against infection was seen in patients who were partially vaccinated (2-doses), p=0.83. Prior infection was associated with reduced likelihood of Omicron infection, HR 0.69 (0.50-0.96), p=0.0289. Four (2.8%) patients died within 28 days of infection diagnosis, with no excess mortality was seen in patients with infection. Conclusion3-doses of SARS-CoV-2 vaccines are required in ICHD to provide protection against Omicron infection.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260488

RESUMO

BackgroundLateral flow immunoassays (LFIAs) have the potential to deliver affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of SARS-CoV-2 vaccine. MethodsThis is a prospective diagnostic accuracy study. SettingSampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Laboratory analyses were performed across Imperial College London sites and university facilities. ParticipantsTwo cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following SARS-CoV-2 vaccine booster, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination, and 21 day follow up. A total of 186 paired samples were collected. InterventionsDuring the participants visit, capillary blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG were detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. Main outcome measuresThe accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay. ResultsUsing the threshold value for positivity on serological testing of [≥]7.10 BAU/ml, the overall performance of the test produces an estimate of sensitivity of 91.94% (95% CI 85.67% to 96.06%) and specificity of 93.55% (95% CI 84.30% to 98.21%) using the Abbott assay as reference standard. ConclusionsFortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveys, but does not meet criteria for individual testing.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260192

RESUMO

BackgroundAttenuated immune responses to mRNA SARS-CoV-2 vaccines have been reported in solid organ transplant recipients. Most studies have assessed serological responses alone, and there is limited immunological data on vector-based vaccines in this population. This study compares the immunogenicity of BNT162b2 with ChAdOx1 in a cohort of kidney transplant patients, assessing both serological and cellular responses. Methods920 patients were screened for spike protein antibodies (anti-S) following 2 doses of either BNT162b2 (n=490) or ChAdOx1 (n=430). 106 patients underwent assessment with T-cell ELISpot assays. 65 health care workers were used as a control group. ResultsAnti-S was detected in 569 (61.8%) patients. Seroconversion rates in infection-naive patients who received BNT162b2 were higher compared with ChAdOx1, at 269/410 (65.6%) and 156/358 (43.6%) respectively, p<0.0001. Anti-S concentrations were higher following BNT162b, 58(7.1-722) BAU/ml, compared with ChAdOx1, 7.1(7.1-39) BAU/ml, p<0.0001. Calcineurin inhibitor monotherapy, vaccination occurring >1st year post-transplant and receiving BNT162b2 was associated with seroconversion. Only 28/106 (26.4%) of patients had detectable T-cell responses. There was no difference in detection between infection-naive patients who received BNT162b2, 7/40 (17.5%), versus ChAdOx1, 2/39 (5.1%), p=0.15. There was also no difference in patients with prior infection who received BNT162b2, 8/11 (72.7%), compared with ChAdOx1, 11/16 (68.8%), p=0.83. ConclusionsEnhanced humoral responses were seen with BNT162b2 compared with ChAdOx1 in kidney transplant patients. T-cell responses to both vaccines were markedly attenuated. Clinical efficacy data is still required but immunogenicity data suggests weakened responses to both vaccines in transplant patients, with ChAdOx1 less immunogenic compared with BNT162b2.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260089

RESUMO

BackgroundLimited data exists on the immunogenicity of vector-based SARS-CoV-2 vaccines in patients with kidney disease. Given their use in over 180 countries, such data is of upmost importance to inform policy on optimal vaccination strategies. This study compares the immunogenicity of BNT162b2 with ChAdOx1 in patients receiving haemodialysis. Methods1021 patients were screened for spike protein antibodies (anti-S) following 2 doses of either BNT162b2 (n=523) or ChAdOx1 (n=498). 191 patients underwent assessment with T-cell ELISpot assays. 65 health care workers were used as a control group. ResultsAnti-S was detected in 936 (91.2%) of patients post-vaccination. There was no difference in seroconversion rates between infection-naive patients who received BNT162b2, 248/281 (88.3%), compared with ChAdOx1, 227/272 (83.5%), p=0.11. Anti-S concentrations were higher following BNT162b, 462(152-1171) BAU/ml, compared with ChAdOx-1 79(20-213) BAU/ml, p<0.0001. Immunosuppression was associated with failure to seroconvert (p<0.0001); whilst being active on the transplant wait list was a predictor for seroconversion (p=0.02). Only 73 (38.2%) of patients had detectable T-cell responses post-vaccination, with no proportional difference between infection-naive patients who received BNT162b2, 2/19 (10.5%), versus ChAdOx1, 15/75 (20.0%), p=0.34. There were no quantitative differences in T-cell responses in infection-naive patients, with a median 2(0-16) SFU/106 PBMCs and 10(4-28) SFU/106 PBMCs in those receiving BNT162b2 and ChAdOx1 respectively, p=0.35. These responses were significantly weaker compared with healthy controls. ConclusionsEnhanced immunogenicity was seen with BNT162b2 compared with ChAdOx1, driven by superior humoral responses, with attenuated T-cell responses to both vaccines. Comparative data on clinical efficacy is now required. Significance StatementLimited data exist on the immunogenicity of vector-based SARS-CoV-2 vaccines in patients with kidney disease. Given their use in over 180 countries worldwide, such data are of upmost importance to inform policy on optimal vaccination strategies. This study compares the immunogenicity of BNT162b2 (n=523) against the adenovirus vector vaccine, ChAdOx1 (n=498), in 1021 haemodialysis patients. In infection-naive patients, overall seroconversion rates were comparable, however, spike protein antibody concentrations were significantly higher following BNT162b2. No difference in T-cell responses was seen, however, all naive patients had weaker responses compared with healthy controls. Equivalent attenuated cellular responses to both vaccines, with greater humoral responses to BNT162b2, suggests BNT162b2 has superior immunogenicity in this patient population, with data on clinical efficacy required.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252512

RESUMO

BackgroundEngland has experienced high rates of SARS-CoV-2 infection during the COVID-19 pandemic, affecting in particular minority ethnic groups and more deprived communities. A vaccination programme began in England in December 2020, with priority given to administering the first dose to the largest number of older individuals, healthcare and care home workers. MethodsA cross-sectional community survey in England undertaken between 26 January and 8 February 2021 as the fifth round of the REal-time Assessment of Community Transmission-2 (REACT-2) programme. Participants completed questionnaires, including demographic details and clinical and COVID-19 vaccination histories, and self-administered a lateral flow immunoassay (LFIA) test to detect IgG against SARS-CoV-2 spike protein. There were sufficient numbers of participants to analyse antibody positivity after 21 days from vaccination with the PfizerBioNTech but not the AstraZeneca/Oxford vaccine which was introduced slightly later. ResultsThe survey comprised 172,099 people, with valid IgG antibody results from 155,172. The overall prevalence of antibodies (weighted to be representative of the population of England and adjusted for test sensitivity and specificity) in England was 13.9% (95% CI 13.7, 14.1) overall, 37.9% (37.2, 38.7) in vaccinated and 9.8% (9.6, 10.0) in unvaccinated people. The prevalence of antibodies (weighted) in unvaccinated people was highest in London at 16.9% (16.3, 17.5), and higher in people of Black (22.4%, 20.8, 24.1) and Asian (20.0%, 19.0, 21.0) ethnicity compared to white (8.5%, 8.3, 8.7) people. The uptake of vaccination by age was highest in those aged 80 years or older (93.5%). Vaccine confidence was high with 92.0% (91.9, 92.1) of people saying that they had accepted or intended to accept the offer. Vaccine confidence varied by age and ethnicity, with lower confidence in young people and those of Black ethnicity. Particular concerns were identified around pregnancy, fertility and allergies. In 971 individuals who received two doses of the Pfizer-BioNTech vaccine, the proportion testing positive was high across all age groups. Following a single dose of Pfizer-BioNTech vaccine after 21 days or more, 84.1% (82.2, 85.9) of people under 60 years tested positive (unadjusted) with a decreasing trend with increasing age, but high responses to a single dose in those with confirmed or suspected prior COVID at 90.1% (87.2, 92.4) across all age groups. ConclusionsThere is uneven distribution of SARS-CoV-2 antibodies in the population with a higher burden in key workers and some minority ethnic groups, similar to the pattern in the first wave. Confidence in the vaccine programme is high overall although it was lower in some of the higher prevalence groups which suggests the need for improved communication about specific perceived risks. Two doses of Pfizer-BioNTech vaccine, or a single dose following previous infection, confers high levels of antibody positivity across all ages. Further work is needed to understand the relationship between antibody positivity, clinical outcomes such as hospitalisation, and transmission.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249865

RESUMO

BackgroundPatients with end stage kidney disease (ESKD) receiving in-centre haemodialysis (ICHD) have had high rates of SARS-CoV-2 infection. Following infection, ICHD patients frequently develop serological evidence of infection, even with asymptomatic disease. The aim of this study is to investigate the durability and functionality of immune responses to SARS-CoV-2 infection in ICHD patients. MethodsThree hundred and fifty-six ICHD patients were longitudinally screened for SARS-CoV-2 antibodies and underwent routine PCR-testing for symptomatic and asymptomatic infection. Patients were screened for nucleocapsid protein (anti-NP) and receptor binding domain (anti-RBD) antibodies. Patients who became seronegative at 6 months were investigated for SARS-CoV-2 specific T-cell responses. ResultsOne hundred and twenty-nine (36.2%) patients had detectable antibody to anti-NP at Time 0, of which 127 (98.4%) also had detectable anti-RBD. At 6 months, of 111 patients tested, 71(64.0%) and 97 (87.4%) remained anti-NP and anti-RBD seropositive respectively, p<0.001. For patients who retained antibody, both anti-NP and anti-RBD levels reduced significantly after 6 months. Ten patients who were anti-NP and anti-RBD seropositive at Time 0, had no detectable antibody at 6 months; of which 8 were found to have SARS-CoV-2 antigen specific T cell responses. Independent of antibody status at 6 months, patients with baseline positive SARS-CoV-2 serology were significantly less likely to have PCR confirmed infection over the following 6 months. ConclusionsICHD patients mount durable immune responses 6 months post SARS-CoV-2 infection, with <3% of patients showing no evidence of humoral or cellular immunity. These immune responses are associated with a reduced risk of subsequent reinfection. SIGNIFICANCE STATEMENTFollowing infection with SARS-CoV-2, patients with end stage kidney disease (ESKD) frequently develop serological evidence of infection, even with asymptomatic disease. Patients with ESKD receiving in-centre haemodialysis (ICHD) have had high rates of SARS-CoV-2 infection. What is not known is how durable the serological responses in ESKD patients are or whether evidence of prior immune responses protect patients from reinfection. In this study of 356 ICHD patients, at 6 months following the detection of SARS-CoV-2 antibodies, fewer than 3% of patients lacked evidence of either humoral or cellular immunity. Furthermore, patients with serological evidence of infection had a significantly lower risk of being diagnosed with subsequent infection or reinfection, suggesting functional immune protection.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20223289

RESUMO

End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We measured 436 circulating proteins in serial blood samples from hospitalised and non-hospitalised ESKD patients with COVID-19 (n=256 samples from 55 patients). Comparison to 51 non-infected patients revealed 221 differentially expressed proteins, with consistent results in a separate subcohort of 46 COVID-19 patients. 203 proteins were associated with clinical severity, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), neutrophil activation (e.g. proteinase-3) and epithelial injury (e.g. KRT19). Machine learning identified predictors of severity including IL18BP, CTSD, GDF15, and KRT19. Survival analysis with joint models revealed 69 predictors of death. Longitudinal modelling with linear mixed models uncovered 32 proteins displaying different temporal profiles in severe versus non-severe disease, including integrins and adhesion molecules. These data implicate epithelial damage, innate immune activation, and leucocyte-endothelial interactions in the pathology of severe COVID-19 and provide a resource for identifying drug targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...